Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2332672, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38517841

RESUMEN

Uruguay experienced its first Chikungunya virus outbreak in 2023, resulting in a significant burden to its healthcare system. We conducted analysis based on real-time genomic surveillance (30 novel whole genomes) to offer timely insights into recent local transmission dynamics and eco-epidemiological factors behind its emergence and spread in the country.


Asunto(s)
Virus Chikungunya , Virus Chikungunya/genética , Uruguay/epidemiología , Américas/epidemiología , Brotes de Enfermedades , Genómica
2.
medRxiv ; 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37732223

RESUMEN

We report the first whole-genome sequences of Dengue Virus type I genotypes I and V from Uruguay, including the first cases ever reported in the country. Through timely genomic analysis, identification of these genotypes was possible, aiding in timely public health responses and intervention strategies to mitigate the impact of dengue outbreaks.

3.
medRxiv ; 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37646000

RESUMEN

Uruguay experienced its first Chikungunya virus outbreak in 2023, resulting in a significant burden to its healthcare system. We conducted analysis based on real-time genomic surveillance (30 novel whole genomes) to offer timely insights into recent local transmission dynamics and eco-epidemiological factors behind its emergence and spread in the country.

4.
Viruses ; 16(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38257724

RESUMEN

The emergence and continued geographic expansion of arboviruses and the growing number of infected people have highlighted the need to develop and improve multiplex methods for rapid and specific detection of pathogens. Sequencing technologies are promising tools that can help in the laboratory diagnosis of conditions that share common symptoms, such as pathologies caused by emerging arboviruses. In this study, we integrated nanopore sequencing and the advantages of reverse transcription polymerase chain reaction (RT-PCR) to develop a multiplex RT-PCR protocol for the detection of Chikungunya virus (CHIKV) and several orthoflaviviruses (such as dengue (Orthoflavivirus dengue), Zika (Orthoflavivirus zikaense), yellow fever (Orthoflavivirus flavi), and West Nile (Orthoflavivirus nilense) viruses) in a single reaction, which provides data for sequence-based differentiation of arbovirus lineages.


Asunto(s)
Arbovirus , Virus Chikungunya , Dengue , Secuenciación de Nanoporos , Infección por el Virus Zika , Virus Zika , Humanos , Arbovirus/genética , Virus Chikungunya/genética , Reacción en Cadena de la Polimerasa Multiplex , Virus Zika/genética
5.
Mem Inst Oswaldo Cruz ; 116: e210275, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35019072

RESUMEN

BACKGROUND: Evolutionary changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include indels in non-structural, structural, and accessory open reading frames (ORFs) or genes. OBJECTIVES: We track indels in accessory ORFs to infer evolutionary gene patterns and epidemiological links between outbreaks. METHODS: Genomes from Coronavirus disease 2019 (COVID-19) case-patients were Illumina sequenced using ARTIC_V3. The assembled genomes were analysed to detect substitutions and indels. FINDINGS: We reported the emergence and spread of a unique 4-nucleotide deletion in the accessory ORF6, an interesting gene with immune modulation activity. The deletion in ORF6 removes one repeat unit of a two 4-nucleotide repeat, which shows that directly repeated sequences in the SARS-CoV-2 genome are associated with indels, even outside the context of extended repeat regions. The 4-nucleotide deletion produces a frameshifting change that results in a protein with two inserted amino acids, increasing the coding information of this accessory ORF. Epidemiological and genomic data indicate that the deletion variant has a single common ancestor and was initially detected in a health care outbreak and later in other COVID-19 cases, establishing a transmission cluster in the Uruguayan population. MAIN CONCLUSIONS: Our findings provide evidence for the origin and spread of deletion variants and emphasise indels' importance in epidemiological studies, including differentiating consecutive outbreaks occurring in the same health facility.


Asunto(s)
COVID-19 , Sistemas de Lectura Abierta , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/virología , Genoma Viral , Humanos , SARS-CoV-2/genética , Eliminación de Secuencia , Uruguay/epidemiología
6.
Mem. Inst. Oswaldo Cruz ; 116: e210275, 2021. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1356485

RESUMEN

BACKGROUND Evolutionary changes in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include indels in non-structural, structural, and accessory open reading frames (ORFs) or genes. OBJECTIVES We track indels in accessory ORFs to infer evolutionary gene patterns and epidemiological links between outbreaks. METHODS Genomes from Coronavirus disease 2019 (COVID-19) case-patients were Illumina sequenced using ARTIC_V3. The assembled genomes were analysed to detect substitutions and indels. FINDINGS We reported the emergence and spread of a unique 4-nucleotide deletion in the accessory ORF6, an interesting gene with immune modulation activity. The deletion in ORF6 removes one repeat unit of a two 4-nucleotide repeat, which shows that directly repeated sequences in the SARS-CoV-2 genome are associated with indels, even outside the context of extended repeat regions. The 4-nucleotide deletion produces a frameshifting change that results in a protein with two inserted amino acids, increasing the coding information of this accessory ORF. Epidemiological and genomic data indicate that the deletion variant has a single common ancestor and was initially detected in a health care outbreak and later in other COVID-19 cases, establishing a transmission cluster in the Uruguayan population. MAIN CONCLUSIONS Our findings provide evidence for the origin and spread of deletion variants and emphasise indels' importance in epidemiological studies, including differentiating consecutive outbreaks occurring in the same health facility.

7.
Am J Trop Med Hyg ; 98(6): 1811-1818, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29633690

RESUMEN

Alphaviruses (Togaviridae) are arboviruses frequently associated with emerging infectious diseases. In this study, we aimed to investigate the presence of alphaviruses in Uruguay by detecting the viral genome in mosquitoes and neutralizing antibodies in equines. A total of 3,575 mosquitoes were analyzed for alphavirus genome detection. Serologic studies were performed on 425 horse sera by plaque reduction neutralization test (PRNT80) against Venezuelan equine encephalitis virus (VEEV) subtype IAB, Pixuna virus (PIXV), Rio Negro virus (RNV), western equine encephalitis virus (WEEV), and Madariaga virus (MADV). Mosquitoes belonging to six genera were captured and 82.9% were identified as Culex pipiens. Two Cx. pipiens pools collected in Fray Bentos and Las Toscas localities were alphavirus positive, and phylogenetic analyses showed that the sequences grouped into two different clusters: the lineage I of eastern equine encephalitis virus and RNV (VEEV complex), respectively. Plaque reduction neutralization test assays showed antibodies against strains of the VEEV complex, MADV, and WEEV. Rio Negro virus was the most geographically widespread virus, showing higher seroprevalences (up to 20%). Seroprevalences against VEEV IAB ranged between 4.6% and 13%; antibodies against PIXV, WEEV, and MADV were less frequent (3-4%). In conclusion, RNV exhibited the highest seroprevalence in horses, a wide geographical distribution, and viral genome was detected in Cx. pipiens mosquitoes. Madariaga virus had a low seroprevalence in equines, but an epizootic lineage typical of North America was detected in Cx. pipiens mosquitoes. Taken together, our results show that alphaviruses are present in Uruguay with variable occurrence and geographical distribution being a potential threat for human and equine health.


Asunto(s)
Infecciones por Alphavirus/epidemiología , Alphavirus/inmunología , Anticuerpos Antivirales/sangre , Culicidae/virología , Genoma Viral/genética , Enfermedades de los Caballos/epidemiología , Alphavirus/genética , Alphavirus/aislamiento & purificación , Infecciones por Alphavirus/virología , Animales , Anticuerpos Neutralizantes/sangre , Femenino , Enfermedades de los Caballos/virología , Caballos , Humanos , Masculino , Filogenia , Estudios Seroepidemiológicos , Uruguay/epidemiología
8.
[Montevideo]; Ministerio de Salud Pública. Departamento de Laboratorios de Salud Pública. Unidad de Gestión del Proyecto del Fondo Mundial para el Sida; 2014. 39 p. ilus, tab.
Monografía en Español | BNUY, UY-BNMED, LILACS | ID: biblio-1255449
9.
Biomed Res Int ; 2013: 582957, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24490165

RESUMEN

St. Louis encephalitis virus (SLEV) and West Nile virus (WNV) belong to the Japanese encephalitis antigenic complex (Flavivirus genus, Flaviviridae family). They show antigenic close relationships and share many similarities in their ecology. Both are responsible for serious human diseases. The aim of this study was to investigate the presence of neutralizing antibodies to these viruses in horses from Uruguay. To do this, 425 horse sera were collected in 2007 and analyzed by plaque reduction neutralization tests. As a result, 205 sera (48.2%) were found positive for SLEV, with titers ranging between 10 and 80. Two sera remained inconclusive, since they showed low titers to WNV and SLEV (10 and 20), not allowing us to demonstrate activity of WNV in our territory. This is the first report of circulation of SLEV in horses in Uruguay.


Asunto(s)
Antígenos Virales/genética , Virus de la Encefalitis de San Luis/genética , Caballos/virología , Virus del Nilo Occidental/genética , Animales , Antígenos Virales/inmunología , Antígenos Virales/aislamiento & purificación , Virus de la Encefalitis de San Luis/aislamiento & purificación , Virus de la Encefalitis de San Luis/patogenicidad , Caballos/inmunología , Humanos , Uruguay , Virus del Nilo Occidental/aislamiento & purificación , Virus del Nilo Occidental/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...